Monitoring Earth's global energy balance from space

- requirements -

Thorsten Mauritsen, Steven Dewitte, Thomas Hocking, Linda Megner, Luca Schifano

Climate out of balance

 Energy is accumulating because of increasing greenhouse gases

- This causes:
 - Rising temperatures
 - Shifting climate zones
 - Droughts and heat waves
 - Flooding
 - Increasing sea levels
- Yet, imbalance is only 1 out of 340 Wm⁻², or **0.3 percent**

Today: imbalanced

Incoming solar energy

Societal benefits from long term monitoring

Governments of the world have agreed to limit global warming below 2 degrees

- Requires declining imbalance:
 - follow up on international agreement
- Prepare for worst-case scenarios:
 - aerosol forcing larger than expected: rapid warming ahead!
 - global tipping-point, extremely unlikely but catastrophic impact
 - geo-engineering may be needed in future

Simulations of past and future scenarios:

Requirements

To be useful, a system must have drifts and errors that are smaller than the signal we want to measure, preferably much smaller

Drift	≪ 0.2 Wm ⁻² /decade
Systematic error	< 1.0 Wm ⁻²
Random error	< 1.0 Wm ⁻²

Making the problem simpler

- Sacrifice resolution for accuracy
- Focus on global annual mean imbalance
- Maintainable and stable over decades

Making the problem simpler

- Sacrifice resolution for accuracy
- Focus on global annual mean imbalance
- Maintainable and stable over decades

Schifano et al. (2020)

Past, current and planned missions use scanners

All scanning radiometers depend on angular dependency models (ADMs) to correct for narrow field of view

- ERBE
- CERES
- Libera
- CLARREO-Pathfinder
- ESAs TRUTHS, FORUM, IASI-NG

$$F(\theta_S) = \frac{\pi I(\theta_S, \, \theta_V, \, \varphi)}{R(\theta_S, \, \theta_V, \, \varphi)}$$

Anisotropic effects

Wide field of view radiometer measures actual flux at satellite position

However, systematic biases in viewing- and solar zenith angles may introduce biases:

- Gristey et al. (2017) explored effects of anisotropic using TRMM angular dependence model (ADM)
- Found difference when introducing ADM of 1.6 Wm⁻² compared with isotropic case
- But only 0.1 Wm⁻² between true and randomised ADMs

The Earth Climate Observatory (ECO) mission

- Consist of polar orbiting satellites
- Observe incoming and outgoing radiation with identical instruments
- Rotate to cancel systematic calibration errors
- Spare instruments to monitor slow drift
- Wide angle cameras (solar/terrestrial) for separation, scene identification, ADM development, mapping
- Constellation to improve sampling, possibly combining precessing and sun-synchronous orbits

Earth

The Earth Climate Observatory (ECO) mission

1- 2 satellites in precessing orbits:

- Good sampling of diurnal cycle on annual time scale
- Only annual means
- Single point of failure
- Mapping difficult

3-4 sun-synchronous + 1-2 precessing:

- Excellent sampling of diurnal cycle on annual time scale
- Cloud feedback monitoring
- Insensitive to failure

2 sun-synchronous + 1-2 precessing:

- Good sampling of diurnal cycle on annual time scale
- Monthly means + mapping possible
- Intercalibration
- Sensitive to failure

8, or more, sun-synchronous:

- Excellent sampling of diurnal cycle on daily time scale
- Footprints overlap, also in tropics
- Excellent mapping
- Robust to failure

Summary of errors

ERBE non-scanner (from Wong et al. 2018):

Sources of uncertainty	Longwave	Shortwave
Instrument stability (drift)	\pm 0.5	\pm 0.1
Instrument absolute accuracy	± 2.5	\pm 2.5
Intercalibration (footprint mismatch)	± 1.2	\pm 1.0
Non-scanner inversion (mapping to TOA level)	< ± 1.0	$<\pm$ 1.0
Satellite altitude correction	0.0	0.0
Twilight data	n/a	$>\pm$ 0.2

~ 3.0 Wm⁻² per channel

Summary of errors

ERBE non-scanner (from Wong et al. 2018):

Sources of uncertainty	Longwave	Shortwave
Instrument stability (drift)	\pm 0.5	± 0.1
Instrument absolute accuracy	\pm 2.5	\pm 2.5
Intercalibration (footprint mismatch)	± 1.2	\pm 1.0
Non-scanner inversion (mapping to TOA level)	< ± 1.0	$<\pm$ 1.0
Satellite altitude correction	0.0	0.0
Twilight data	n/a	$>\pm$ 0.2

Preliminary ECO mission estimates:

Sources of uncertainty	EEI
Instrument stability (drift per decade)	≪ ± 0.1
Instrument absolute accuracy on difference (preliminary)	$<\pm$ 0.5
Intercalibration (footprint mismatch)	n/a
Non-scanner inversion (mapping and reference level)	n/a
Satellite altitude correction	0.0
Twilight data	n/a
Polar regions	?
Diurnal cycle sampling (preliminary estimate)	$\ll \pm 0.3$
Anisotropic correction (literature estimate)	$< \pm 0.1$

~ 3.0 Wm⁻² per channel

Long term monitoring strategy

ECO mission nominal life time is relatively short (5-10 years), but the idea is that it can develop into a long term monitoring mission:

- Instruments are fairly simple, and most of the cost is in development
- Spare instruments can serve to:
 - Evaluate issues on ground
 - Quickly launch satellites in case of failure
 - Piggyback on other missions, synergies
 - Help improve future missions
 - Be shared with other space agencies
- Challenge: long term monitoring is not so cool

GLOBAL AVERAGE SURFACE TEMPERATUR

Project status

We are working towards answering an ESA Earth Explorer call next year

	Phase F	9	Science Impact Quantified
	Phase E2	8	Science Validated and Matured
	Phase E1	7	Science Demonstrated
	Phase B, C, D	6	Mission Concept Validated
	Phase A/B	5	Mission Performance Assessed
A	Phase 0	4	Feasibility Shown
	Development Phase	3	Requirements Drafted
	Development Phase	2	Scientific Idea Consolidated
	Development Phase	1	Initial Scientific Idea Formulated

Summary ECO mission

- We aim to provide accurate and robust long term monitoring of Earth's global mean radiation imbalance
- Concept based on wide field of view radiometers using differential technique plus two cameras (Steven's talk)
- Use of multiple identical instruments to reduce errors from calibration and drift
- Complementary, to more resolutionfocussed "big" missions (spatial, temporal, spectral)
- [long list of things it cannot do]
- A 'gap' filler?

Earth

Extra slides

Anisotropic effects

Wide field of view radiometer measures actual flux at satellite position

However, systematic biases in viewing- and solar zenith angles may introduce biases:

- Gristey et al. (2017) simulated a 32 satellite constellation to produce hourly maps
- Explored effects of anisotropic using TRMM angular dependence model (ADM)
- Found difference when introducing ADM of 1.6 Wm⁻² compared with isotropic case
- But only 0.1 Wm⁻² between true and randomised ADMs

$$\pi^{-1} \int_0^{2\pi} d\phi \int_0^{\pi/2} d\theta R(\theta_0, \theta, \phi) \cos \theta \sin \theta = 1$$

Anisotropic effects

- We currently think the effect is small (~0.1 Wm⁻²)
- In this case we can apply a climatological ADM derived from cameras to correct for this small error
- In the unlikely event the effect is large, a correction using scene dependent ADMs may be needed

$$\pi^{-1} \int_0^{2\pi} d\phi \int_0^{\pi/2} d\theta R(\theta_0, \theta, \phi) \cos \theta \sin \theta = 1$$

